M - 3388

(Pages: 3)

Reg. No.:....

Name:.....

Third Semester M.Sc. Degree Examination, December 2021

SDE

Mathematics

MM 231: COMPLEX ANALYSIS - I

(2017 Admission Onwards)

Time: 3 Hours Max. Marks: 75

Answer either PART A or PART B of each question.

All questions carry equal marks.

- 1. (A) (a) Define absolutely convergent series. Prove that if $\sum a_n$ converges absolutely then $\sum a_n$ converges.
 - (b) If G is open and connected and $f: G \to C$ is differentiable with f'(z) = 0 for all z in G, then prove that f is constant.

- (B) (a) If $\gamma:[a,b]\to C$ is piecewise smooth then prove that γ is of bounded variation and $V(\gamma)=\int\limits_a^b \left|\gamma'(t)\right|dt$.
 - (b) If γ is piecewise smooth and $f:[a,b] \to C$ is continuous then $\int_{a}^{b} f dy = \int_{a}^{b} f(t) \gamma'(t) dt.$

2.	(A)	(a)	Define entire function. If f is an entire function then prove that f hapower series expansion with infinite radius of convergence.	s a 5			
		(b)	Let G be a connected open set and let f be an analytic function defined on G. Prove that the following statements are equivalent.	ned			
			(i) $f \equiv 0$				
			(ii) there is a point a in G such that $f^{(n)}(a) = 0$ for each $n \ge 0$.				
			(iii) $\{z \in G : f(z) = 0\}$ has a limit point in G .	10			
			OR				
	(B)	(a)	State and Prove Fundamental Theorem of Algebra.	6			
		(b)	State and prove Maximum Modulus Theorem.	9			
3.	(A)	(a)	State and prove Cauchy's integral formula 2 nd version.				
		(b)	State and prove Independence of Path Theorem.	7			
			OR OR				
	(B)	Stat	e and prove Gaorsat's Theorem.	15			
4.	(A)	(a)	If f has an isolated singularity at a then prove that $z = a$ is a remova singularity if and only if $\lim_{z \to a} (z - a) f(z) = 0$.	ble 8			
		(b)	State and prove Residue Theorem.	7			
			OR				
	(B)	(a)	State and Prove Casorati-Weierstrass Theorem.	7			
		(b)	Show that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}.$	8			

2

M - 3388

- 5. (A) (a) In the extended plane, find d(z, z'), the distance between z and z' and $d(z, \infty)$.
 - (b) Obtain Schwarz's Lemma.

9

OR

- (B) (a) Let z_1 , z_2 , z_3 , z_4 be four distinct points in C_{∞} . Then prove that (z_1, z_2, z_3, z_4) is a real number if and only if all four points lie on a circle. Also, prove that a Mobius transformation takes circles into circles.
 - (b) State and prove Symmetry Principle.

5

 $(5 \times 15 = 75 \text{ Marks})$

M - 3391

regional and of	
Dagge	3
(Pages	J

Reg. N	10.	:	 	 	
Name	:		 	 	

Third Semester M.Sc. Degree Examination, December 2021

SDE

Mathematics

MM 234 - GRAPH THEORY

(2017 Admission Onwards)

Time: 3 Hours Max. Marks: 75

Answer five questions choosing Part-A or Part-B from each question

All questions carry equal marks.

- 1. (A) (a) Prove that two graphs are isomorphic if and only if their complements are isomorphic.
 - (b) Find the automorphism group of C_7 .
 - (c) Let v be a vertex incident with a bridge in a connected graph G. Show that v is a cut-vertex of G if and only if deg $v \ge 2$.

- (B) (a) Show that isomorphism is an equivalence relation on the set of all graphs.
 - (b) Prove that any two distinct blocks of a nontrivial connected graph have at most one vertex in common.
 - (c) Let G be a cubic graph. Prove that $\kappa(G) = \lambda(G)$.

- (A) (a) Show that a nontrivial connected graph G is Eulerian if and only if every vertex of G has even degree.
 - (b) Prove that the Peterson graph is non-Hamiltonian.

OR

- (B) (a) Obtain a necessary and sufficient condition for the Cartesian product $G \times H$ of two nontrivial connected graphs G and H to be Eulerian.
 - (b) Let G be a graph of order $n \ge 3$. If $\deg u + \deg v \ge n$ for each pair u,v of nonadjacent vertices of G, prove that G is Hamiltonian.
 - (c) Define Hamiltonian number and give an example.
- 3. (A) (a) Show that every tournament contains a Hamiltonian path.
 - (b) State and prove the Marriage Theorem.
 - (c) Prove that the Peterson graph is the unique 5-cage.

OR

- (B) (a) Let G be a bipartite graph with partite sets U and W such that $r = |U| \le |W|$. Prove that G contains a matching of cardinality r if and only if U is neighborly.
 - (b) For every integer $k \ge 1$, prove that the complete graph K_{2k+1} is Hamiltonian factorable.
- (A) (a) Describe the problem of the Five princes and the problem of the Five Places.
 - (b) Let k and n be integers with $2 \le k < n$. Among all graphs of order n that do not contain K_{k+1} as a subgraph, prove that at least one of those having maximum size is a k-partite graph.
 - (c) Find $RR(F, P_3)$.

- (B) (a) Show that a graph G is 2-chromatic if and only if G is bipartite.
 - (b) Define edge chromatic number of a graph G. Give an example of a graph G which is 4edge chromatic.
 - (c) For every tree T_m of order $m \ge 2$ and every integer $n \ge 2$, prove that $r(T_m, K_n) = (m-1)(n-1) + 1$.
- 5. (A) (a) Define radius and diameter of a graph G. Prove that $rad(G) \le dim(G) \le 2$ rad (G).
 - (b) Define locating number of a graph G. Prove that a connected graph G of order n has locating number 1 if and only if $G \cong P_n$.
 - (c) For each pair a, b of positive integers with $a \le b \le 2a$, prove that there exists a connected graph G with $rad_D(G) = a$ and $diam_D(G) = b$.

OR

- (B) (a) Prove that the center of every connected graph G is a subgraph of some block of G.
 - (b) Let G be a connected graph. Prove that a vertex v is a boundary vertex of G if and only if v is not an interior vertex of G.
 - (c) Define radio k-coloring. Give an example of a graph G for which $rc_2(G) = 6$.

 $(5 \times 15 = 75 \text{ Marks})$

Name:....

Third Semester M.Sc. Degree Examination, November 2022

SDE

Mathematics

MM 232: FUNCTIONAL ANALYSIS I

(2017 Admission Onwards)

Time: 3 Hours Max. Marks: 75

- (1) Answer either Part A or Part B of each guestions.
- (2) All question carry equal marks.
- (A) (a) Prove that the sequence space I^p, 1≤n < ∞ is a normed linear space. 5
 - (b) If Y is a closed subspace of a normed space X, define the quotient norm on X/Y. Verify that it is a norm on X/Y. Prove that a sequence {X_n + y} in X/Y converges to X + Y in X/Y if and only if there is a sequence (Y_n) in Y such that (X_n + Y_n) converges to X in X.
 10

- (B) (a) If Y is a finite dimensional subspace of a normed space X, prove that Y is complete.
 - (b) Let X denote a subspace of B(T) with sup norm, 1∈ X and f be a linear functional on X. If f is continuous and ||f|| = f(1), then prove that f is positive. Further if Re x ∈ X whenever x ∈ X and if f is positive, then prove that f is continuous and ||f|| = f(1).
 9

	(5)	$g \in Y^1$, there is a unique if X^1 is strictly convex.	Hahn-Banach extension	of g to X if and only 10	
			OR		
(D)		and sna	- V 975	16 d le :	

- (B) (a) Show that a normed space X is a Banach space if and only if every absolutely summable series of elements in X is summable in X.
 7
 - (b) If Y is a closed subspace of a normed space, show that X is a Banach space if and only if Y and X/Y are Banach spaces in the induced norm and the quotient norm, respectively.
 8
- 3. (A) (a) State and prove Uniform boundedness principle. 9
 - (b) State and prove Banach-Steinhaus theorem. 6

OR

- (B) (a) State and prove the closed graph theorem.
 - (b) If X and Y are normed spaces and $F: X \to Y$ is linear, show that F is an open map if and only if there exists some y > 0 such that for every $y \in Y$, there is some $x \in X$ with F(x) = y and $||x|| \le y ||Y||$.
- 4. (A) (a) If X is a normed space and $A \in BL(X)$ is of finite rank, prove that $\sigma_e(A) = \sigma_s(A) = \sigma(A).$
 - (b) If X is a Banach space, A∈BL(X) and A^p < 1 for some positive integer p, prove that the bounded operator I-A is invertible.

OR

2

- (B) If X is a nonzero Banach space over \mathbb{C} and $A \in BL(X)$, prove that
 - (a) $\sigma(A)$ is non empty

(b) $r_{\sigma}(A) = \lim_{n \to \infty} A^n \Big|_{n=0}^{n}$

9

7

- (b) X^1 is reflexive.
- (c) Every closed subspace of X is reflexive.

6

5

OR

(B) (a) Prove that the normed space I[∞] is not reflexive.

7

(b) If X is a normed space and $A \in CL(X)$, $\sigma_s(A) = \sigma(A)$

 $(5 \times 15 = 75 \text{ Marks})$

ocuceritaliloraty!!