# (Pages:4)

Reg. No. : .....

Name : .....

# Third Semester M.Sc. Degree Examination, January 2023

# **Mathematics**

# MM 231 — COMPLEX ANALYSIS

# (2020 Admission Onwards)

Time : 3 Hours

Max. Marks : 75



Answer any five questions. Each question carries 3 marks.

- 1. Prove that every convergent series in c is absolutely convergent.
- 2. State Cauchy's estiamte.
- 3. Define index or winding number  $n(\gamma, a)$ . Show that  $n(\gamma, a) = -n(-\gamma, a)$  for every  $a \notin \{\gamma\}$ .
- 4. Give an example of a closed rectifiable curve  $\gamma$  in a region *G* such that  $n(\gamma; w) = 0$  for all  $w \in \mathbb{C} G$  where as  $\gamma$  is not homotopic to a constant curve.
- 5. State Cauchy's theorem and Goursat's theorem.

6. Evaluate 
$$\int_{0}^{\infty} \frac{dx}{(1+x^2)}$$
.

P.T.O.

- 7. Let z = a be an isolated singularity of f and let  $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n$  be its Laurent expansion. Prove that z = a is a removable singularity if and only if  $a_n = 0$  and  $n \le -1$ .
- 8. Prove that a Mobius transformation takes circles into circles.

$$(5 \times 3 = 15 \text{ Marks})$$

Answer **all** questions. Each question carries **12** marks.

9. A. (a) For a given power series  $\sum_{n=0}^{\infty} a_n (z-a)^n$ , let *R* be defined by  $0 \le R \le \infty$ and  $\frac{1}{R} = \limsup |a_n|^{1/n}$ . If |z-a| < R, prove that the series  $\sum_{n=0}^{\infty} a_n (z-a)^n$  converges absolutely. 4

- (b) Let  $G \subset \mathbb{C}$  be open and let  $\gamma$  be a rectifiable path in G with initial and end points  $\alpha$  and  $\beta$  respectively. If  $f: G \to \mathbb{C}$  is a continuous function with a primitive  $F: G \to \mathbb{C}$ , show that  $\int_{\gamma} f = F(\beta) - F(\alpha)$ . OR
- B. (a) If G is open and connected and  $f: G \to \mathbb{C}$  is differentiable with f'(z) = 0 for all  $\alpha \in G$ , prove that f is constant.
  - (b) Let *G* be either the whole plane  $\mathbb{C}$  or some open disk. If  $u: G \to \mathbb{R}$  is a harmonic function, show that *u* has a harmonic conjugate. **4**
  - (c) If  $\gamma$  is piecewise smooth and  $f:[a, b] \to \mathbb{C}$  is continuous, show that  $\int_{a}^{b} f d\gamma = \int_{a}^{b} f(t) \gamma'(t) dt.$ 4

P - 6031

10. A. (a) Let *f* be analytic in B(a; R) and  $a_n = \frac{1}{n!} f^{(n)}(a)$ . Show that

 $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$  for |z-a| < R and this series has radius of convergence  $\ge R$ .

(b) Let γ be a closed rectifiable curve in C. Prove that n(γ: a) is constant for a be longing to a component of G = C - {γ}. Further prove that n(γ, a) = 0 for a belonging to the unbounded component of G.

#### OR

B. (a) Let  $f: G \to \mathbb{C}$  be analytic and  $\overline{B}(a; r) \subset G(r > 0)$ . If  $\gamma(t) = a + re^{it}$ ,  $0 \le t \le 2\pi$ , prove that, for |z-a| < r,

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(w)}{w - z} dw.$$

11. A. (a) Let *G* be a region and let  $f: G \to \mathbb{C}$  be a continuous function such that  $\int_{T} f = 0$  for every triangular path *T* in *G*. Prove that the function f is analytic in *G*.

(b) State and prove Independence Path Theorem. 6

### OR

- B. If  $\gamma_0$  and  $\gamma_1$  are two closed rectifiable curves in *G* and  $\gamma_0 \sim \gamma_1$ , prove that  $\int_{\gamma_0} f = \int_{\gamma_1} f$  for every function *f* analytic in *G*. **12**
- 12. A. (a) State and prove Casorati-Weierstrass theorem.6
  - (b) State and prove Rouche's theorem.

#### OR

B. (a) Prove that 
$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$$
. 6

(b) State and prove the Argument Principle. 6

P – 6031

6

6

- 13. A. (a) State and explain the Symmetry Principle through an example. 6
  - (b) Prove that the cross ratio of four distinct points in  $\mathbb{C}_{\infty}$  is real if and only if all four points lie on a circle. **6**

#### OR

- B. (a) Prove that Mobius transformation takes circles into circles. 6
  - (b) State and prove Schwarz's Lemma.

 $(5 \times 12 = 60 \text{ Marks})$ 

6

contraining and in

Reg. No. : .....

Name : .....

# Third Semester M.Sc. Degree Examination, January 2023

# **Mathematics**

# MM 232 : FUNCTIONAL ANALYSIS - I

# (2020 Admission Onwards)

Time : 3 Hours

Max. Marks : 75

Answer any five questions. Each question carries 3 marks.

- 1. Let X be a normed linear space. For for  $x \in X$  and r > 0, prove that the open ball  $U(x, r) = \{y \in X : ||x y|| < r\}$  and its closure  $\overline{U}(x, r)$  are convex subsets of X.
- 2. If a normed linear space X is finite dimensional, prove that X is complete.
- 3. Define support functional and support hyperplane. Give an example.
- 4. Define summable and absolutely summable series in a Banach space.
- 5. Show that  $F \in BL(X, y)$  is bounded if and only if  $y' \circ F \in X'$  for every for every  $y' \in Y'$ .
- 6. State Newton-Cotes formulae.
- 7. Define resolvent set of  $A \in BL(X, Y)$ .
- 8. Let X and Y be normed linear spaces and  $F \in BL(X, Y)$ . Show that F' is one to one if and only if R(F) is dense in Y.

(5 × 3 = 15 Marks)

**P.T.O.** 

#### PART – B

Answer **all** questions. Each question carries **12** marks.

- 9. (A) (a) If  $f: X \to K$  is a linear functional, prove that either  $f \equiv 0$  or f maps open sets in X onto open sets in K.
  - (b) If Y is a closed subspace of a normed linear space X, prove that the quotient space X/Y is a normed space. Also prove that a sequence (x<sub>n</sub> + Y) in X/Y converges to x + y ∈ X/Y if and only if there exists a sequence (y<sub>n</sub>) in Y such that (x<sub>n</sub> + y<sub>n</sub>) converges to x in X.
  - (c) Let X be a normed linear space which is linearly homeomorphic to a complete normed linear space Y. Show that X is also complete.
    3

# OR C

- (B) (a) Let X be a normed linear space over K and let  $F: X \to K$  be a linear map. Prove that F is continuous at 0 if and only if Z(F) is closed in X. 6
  - (b) Let X be a normed linear space and Y a closed subspace of X with  $Y \neq X$ . Prove that there exists  $x_r \in X$  such that  $||x_r|| = 1$  and  $r \leq d(x, Y) \leq 1$  for every 0 < r < 1.
- 10. (A) (a) Let X be a normal linear space. Prove that every bounded linear functional on every subspace of X has a unique norm-preserving linear extension to X if and only if X' is strictly convex.
  - (b) Let  $X \neq \{0\}$  and Y be two normed linear spaces. Prove that BL(X, Y) is Banach if and only if Y is Banach space. 6

#### OR

- (B) (a) Let X be a normed linear space over  $\mathbb{R}$ , E a non-empty open convex subset of X, and Y a subspace of X such that  $E \cap Y = \phi$ . Prove that there exists a closed hyperspace H in X such that  $Y \subset H$  and  $E \cap H = \phi$ . 5
  - (b) Let X be a Banach space. Show that X cannot have a denumerable basis. **4**
  - (c) Let Y be a subspace of X and  $a \in X$ , prove that  $a \in \overline{Y}$  if and only if f(a) = 0 whenever  $f \in X'$  and  $f \equiv 0$  on Y. **3**
- 11. (A) (a) Let X be a normed linear space and  $E \subset X$ . Prove that E is bounded in X if and only if x'(E) is bounded in K for every  $x' \in X'$ . 6
  - (b) State and prove the closed graph theorem.

#### OR

- (B) (a) Let X be Banach space over  $\mathbb{C}$ , D an open subset of  $\mathbb{C}$  and  $F: D \to X$ . Prove that F is analytic on D if and only if  $x' \circ F$  is analytic on D for every  $x' \in X'$ .
  - (b) Give an example to show that the completeness assumption in the closed graph theorem cannot be omitted. 6
- 12. (A) (a) Let X and Y be two normed linear spaces. State and prove Neumann expansion for  $A \in BL(X, Y)$ .
  - (b) Find e(S) and a(S) for the right shift operator S on a Banach sequence space X.

#### OR

- (B) (a) Let X be a linear space and  $A \in BL(X)$  be of finite rank. Prove that s(A) = e(A).
  - (b) Let X be a linear space and  $P \in BL(X)$  be a projection. Prove that

$$e(P) = s(P) = \begin{cases} \{0\} & \text{if } P = 0\\ \{1\} & \text{if } P = I\\ \{0, 1\} & \text{if } 0 \neq P \neq I \end{cases}$$



6

6

13. (A) Let X and Y be Banach spaces and  $F \in BL(X, Y)$ . Show that F is onto if and only if F' is bounded above. **12** 

#### OR

- (B) (a) State and prove a criterion to determine the weak convergence of a sequence in a normal linear space X.
  - (b) Let X and Y be normed linear spaces and  $X \neq \{0\}$ . Prove that CL(X, Y) is Banach if and only if Y is Banach. **6**

 $(5 \times 12 = 60 \text{ Marks})$ 

------



Reg. No. : .....

Name : .....

# Third Semester M.Sc. Degree Examination, January 2023

# **Mathematics**

# **Elective II**

# MM 234 : GRAPH THEORY

# (2020 Admission Onwards)

Time : 3 Hours

Max. Marks : 75

# SECTION -

Answer **any five** questions. **Each** question carries **3** marks.

- 1. Show that a vertex V of a connected graph G is a Cut-vertex of G if and only if there exist vertices u and w distinct from v such that v lies on every u-w path of G.
- 2. If G is a graph of order n and size  $m \ge n-1$ , then show that  $K(G) \le \left[\frac{2m}{n}\right]$
- 3. If G is a Hamiltonian graph, then show that for every nonempty proper set S of vertices of G,  $K(G-S) \le |S|$
- 4. Determine the value of  $\alpha(G)$ ,  $\beta(G)$ ,  $\alpha_1(\beta)$  and  $\beta_1(G)$  for  $K_1 + 2K_3$ .
- 5. Show that every r-regular bipartite graph,  $r \ge 1$ , is 1-factorable.
- 6. Let *G* be a graph of odd order n and size m. If  $m > \frac{(n-1)\Delta(G)}{2}$ , then show that  $\chi_1(G) = 1 + \Delta(G)$ .



- 7. For every two adjacent vertices u and v in a connected graph, prove that  $|e(u) e(v)| \le 1$ .
- 8. Show that no cut vertex of a connected graph G is a boundary vertex of G.

 $(5 \times 3 = 15 \text{ Marks})$ 

#### SECTION – B

Answer **all** questions. **Each** question carries 12 marks.

- 9. (A) (i) Show that  $K(H_{3,p}) = 3$ 
  - (ii) Prove that isomorphism is an equivalence relation on the set of all graphs.
  - (B) (i) For every graph G, show that  $K(G) \le \lambda(G) \le \delta(G)$ .
    - (ii) If G and H are isomorphic graph, then show that the degrees of the vertices of G are the same as the degrees of the vertices of H.
- 10. (A) (i) Prove that the Petersen graph is non-Hamiltonian.
  - (ii) Let G be a graph of order  $n \ge 3$ . If for every integer j with  $1 \le \int <\frac{n}{2}$ , then number of vertices of G with degree almost j is loss then j, then show that G is Hamiltonian.
  - (B) (i) Show that a connected graph G contains an Eulerian trail iff exactly two vertices of G have odd degree. Further more, each Eulerian trail of G begins at one of these odd vertices and ends at the other.
    - (ii) For every connected graph G, show that  $h^*(G) = h(G)$ , where h(G) is the length of a Hamiltonian walk in G and  $h^*(G)$  is the Hamiltonian number of G.



- 11. (A) (i) Show that a digraph D is strong if and only if D contains a closed spanning walk.
  - (ii) Show that for every graph G of order n containing no isolated vertices,  $\alpha_1(G) + \beta_1(G) = n$ .
  - (B) (i) If u is a vertex of maximum out degree in a tournament T, then show that  $d(u,v) \le 2$  for every vertex v of T.
    - (ii) State and prove the Petersen's theorem.
- 12. (A) (i) If G is a non empty bipartite graph, then show that  $\chi_1(G) = \Delta(G)$ .
  - (ii) Prove that  $r(K_3, K_4) = 9$
  - (B) (i) For every graph G, show that  $\chi(G) \le 1 + \max{\{\delta(H)\}}$ , where the maximum is taken over all induced sub graphs *H* of *G*.
    - (ii) Show that every graph of order  $n \ge 3$  and size atleast  $\binom{n-1}{2}+2$  is Hamiltonian.
- 13. (A) (i) Show that the center of every connected graph G is a subgraph of some block of G.
  - (ii) Show that a connected graph G of order n has locating number 1 iff  $G \cong P_n$ .
  - (B) (i) Show that non trivial graph G is the eccentric sub graph of some graph if and only if every vertex of G has eccentricity 1 or no vertex of G has eccentricity 1.
    - (ii) Prove that for every nontrivial connected graph G,  $rad_{D}(G) \le diam_{D}(D) \le 2rad_{D}(G)$ .

 $(5 \times 12 = 60 \text{ Marks})$ 

Reg. No. : .....

Name : .....

# Third Semester M.Sc. Degree Examination, January 2023

# **Mathematics**

# Elective I

# **MM 233 – OPERATIONS RESEARCH**

# (2020 Admission Onwards)

Time : 3 Hours

Max. Marks : 75

SECTION -

Answer **any five** questions. **Each** question carries **3** marks.

- 1. Define
  - (a) Basic Solution
  - (b) Basic feasible solution
  - (c) Optimum basic feasible solution.
- 2. What is meant by standard form of an LPP?
- 3. Using Vogel's approximation method, find an initial basic feasible solution of the transportation problem:

|                | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Supply |
|----------------|-------|-------|-------|-------|--------|
| S <sub>1</sub> | 1     | 2     | 1     | 4     | 30     |
| S <sub>2</sub> | 3     | 3     | 2     | 1     | 50     |
| S <sub>3</sub> | 4     | 2     | 5     | 9     | 20     |
| Demand         | 20    | 40    | 30    | 10    |        |

4. What is an assignment problem? Give the mathematical formulation of an assignment problem.

P.T.O.

- 5. Explain the following terms in PERT/CPM.
  - (a) Total activity time
  - (b) Event Slack
  - (c) Critical Path
- 6. What do you mean by non-linear programming problem? Define Lagrangian function for the non-linear programming problem: Minimize f(X) subject to  $g_i(X) \le 0, i = 1, 2, ... n$ .
- 7. Write the Kuhn-Tucker conditions for:

Minimize  $f = (x_1 - 2)^2 + x_2^2$  subject to  $x_1^2 + x_2 - 1 \le 0, x_1, x_2 \ge 0$ .

8. Explain the computational economy in dynamic programming.

(5 × 3 = 15 Marks)

# SECTION - B

Answer all questions. Each question carries 12 marks.

9. (a) Use two phase simplex method to solve: Minimize  $z = x_1 + x_2$ Subject to  $2x_1 + x_2 \ge 4$ ;  $x_1 + 7x_2 \ge 7$ ;  $x_1, x_2 \ge 0$ OR

- (b) Solve the following LPP by Big-M method. Maximise  $Z = x_1 + 2x_2 + 3x_3 - x_4$ Subject to  $x_1 + 2x_2 + 3x_3 = 15$ ;  $2x_1 + x_2 + 5x_3 = 20$ ;  $x_1 + 2x_2 + x_3 + x_4 = 10$ ;  $x_1, x_2, x_3, x_4 \ge 0$ .
- 10. (a) Solve the following transportation problem:

|        | Ρ | Q  | R  | S | Supply |
|--------|---|----|----|---|--------|
| А      | 6 | 3  | 5  | 4 | 22     |
| В      | 5 | 9  | 2  | 7 | 15     |
| С      | 5 | 7  | 8  | 6 | 8      |
| Demand | 7 | 12 | 17 | 9 | 45     |

OR



(b) A department company has five employees with five jobs to be performed. The time in hours that each man takes to perform each job is given in the following table:

| Employees |   |    |    |    |    |    |
|-----------|---|----|----|----|----|----|
|           |   |    |    | II | IV | V  |
|           | А | 10 | 5  | 13 | 15 | 16 |
| Jobs      | В | 3  | 9  | 18 | 13 | 6  |
|           | С | 10 | 7  | 2  | 2  | 2  |
|           | D | 7  | 11 | 9  | 7  | 12 |
|           | Е | 7  | 9  | 10 | 4  | 12 |

## Employees

How should the jobs be allocated, one per employee, so as to minimize the total man-hours?

11. (a) An architect has been awarded a contract to prepare plans for an urban renewal project. The job consists of the following activities and their estimated times:

| Activity | Description                  | Immediate    | Time   |
|----------|------------------------------|--------------|--------|
|          |                              | Predecessors | (Days) |
| А        | Prepare preliminary sketches | <b>D</b> ' _ | 2      |
| В        | Outline specifications       | _            | 1      |
| С        | Prepare drawings             | А            | 3      |
| D        | Write specifications         | A, B         | 2      |
| Е        | Run off prints               | C, D         | 1      |
| F        | Have specification           | B, D         | 3      |
| G        | Assemble bid packages        | E, F         | 1      |
|          |                              |              |        |

- (i) Draw the network diagram of activities for the project.
- (ii) Identify the critical path. What is its length?
- (iii) Find the total float and free float for each activity.

#### OR

(b) A research and development department is developing a new power supply for a console television set, It has broken the job down into the following:

| Job | Description                                     | Immediate    | Time   |  |
|-----|-------------------------------------------------|--------------|--------|--|
|     |                                                 | Predecessors | (Days) |  |
| А   | Determine output voltage                        | -            | 5      |  |
| В   | Determine whether to use solid state rectifiers | A            | 7      |  |
| С   | Choose rectifier                                | В            | 2      |  |

| Job | Description               | Immediate | Time |
|-----|---------------------------|-----------|------|
| D   | Choose filters            | В         | 3    |
| Е   | Choose transformer        | С         | 1    |
| F   | Choose chassis            | D         | 2    |
| G   | Choose rectifier mounting | С         | 1    |
| Н   | Layout chassis            | E, F      | 3    |
| Ι   | Build and test            | G, H      | 10   |

- Draw the network diagram of activities involved in the project and (i) indicate the critical path.
- What is the minimum completion time for the project? (ii)
- Minimize  $f(X) = -x_1 x_2 x_3 + \frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$ (a) 12. Subject to  $g_1(X) = x_1 + x_2 + x_3 - 1 \le 0$ (b) Maximize  $2x_1 - x_1^2 - x_2$ Subject to  $2x_1 - x_1^2 - x_2$ 
  - Subject to  $2x_1 + 3x_2 \le 6, 2x_1 + x_2 \le 4, x_1, x_2 \ge 0$ .
- Determine max  $(u_1^2 + u_2^2 + u_3^2)$  subject to  $u_1 u_2 u_3 \le 6$  where  $u_1 u_2 u_3 \ge 0$ . (a) 13.

OR

- (b) Show that in a serial two-stage minimization or maximation problem if.
  - the objective function  $\phi_2$ , is a separable function of stage returns (i)  $f_1(X_1, U_1)$  and  $f_2(X_2, U_2)$ .
  - $\phi_2$  is monotonic nondecreasing function of  $f_1$  for every feasible value of (ii)  $f_2$ , then the problem is decomposable.

 $(5 \times 12 = 60 \text{ Marks})$ 

