N - 5376

(Pages	:	4)
--------	---	----

Reg. No.:	
Name :	

First Semester M.Sc. Degree Examination, May 2022

Mathematics

MM 214 — TOPOLOGY - I

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

PART – A

Answer any five questions. Each question carries 3 marks.

- 1. Compute the distance from a = (-2,1) and b = (3, 4) in \mathbb{R}^2 with respect to the following three metrics.
 - (a) usual metric
 - (b) taxicab metric
 - (c) max metric
- 2. In the plane \mathbb{R}^2 describe the open ball with center 0 and radius 1 with respect to the following metrics.
 - (a) Usual metric
 - (b) Taxicab metric
- 3. Define metrically equivalent spaces and show that metric equivalence is an equivalence relation.

- Define a nowhere dense subset of a metric space and give two examples of 4. nowhere dense sets in \mathbb{R}^2 .
- Determine the smallest and largest topologies on any set X. 5.
- For a subset A of a topological space X, prove that A is open if and only if 6. $bdy(A) \subset (X-A)$.
- If $\mathbb R$ is the space of real numbers with finite complement topology, is $\mathbb R^2$ 7. connected or disconnected? Justify your answer.
- 8. Find the one-point compactification of the real line \mathbb{R} .

 $(5 \times 3 = 15 \text{ Marks})$

PART - B

Answer all questions. Each question carries 12 marks.

(A) (a) State and prove the Minkowski inequality. 9.

- 6
- (b) With usual notations prove that $\mathbb{C}[a, b]$ is a metric spare with ρ defined by $\rho(f,g) = \int_{a}^{b} |f(x) - g(x)| dx$. 6

- (B) (a) Prove that a sequence in a metric space cannot converge to more than one limit.
 - (b) If A is a subset of a metric space X, prove that \overline{A} is a closed set and is a subset of every closed set containing A.
- 10. (A) Prove that the following statements are equivalent for a function f from metric space (X, d) to metric space (Y, d'):
 - (i) f is continuous
 - (ii) For each sequence (x_n) converging to a in X, $(f(x_n))$ converges to f(a)

	(iii)	For each open set O in $Y, f^{-1}(O)$ is open in X
	(iv)	For each closed set C in $Y, f^{-1}(C)$ is closed in X .
		OR
(B)	(a)	Show that every metric space is topologically equivalent to a bounded metric space.
	(b)	Stare and prove the Cantor's Intersection theorem. 6
11. (A)	(a)	Prove that the Hilbert space is separable. 6
	(b)	Prove hat a family $\mathcal B$ of subsets of a set X is a basis for some topology for X if and only if both of the following conditions hold :
		(i) The union of the members of ${\cal B}$ is X
		(ii) For each B_1, B_2 in \mathcal{B} and $x \in_1 B_1 \cap B_2$ there is a member B_x of \mathcal{B} such that $x \in B_x \subset B_1 \cap B_2$.
		OR
(B)	(a)	Prove that the following are topological properties :
		(i) Separability
		(ii) First Countability
		(iii) Second Countability 6
	(b)	Define the Zariski topology. Show that \mathbb{R}^n with Zariski topology is not Hausdorff.
12. (A)	Pro	ve that the following statements are equivalent for a topological space X
	(i)	X is disconnected
	(ii)	X is the union of two disjoint, non-empty closed sets
		3 N - 5376

- (iv) There is a continuous function f from X onto a discrete two point space $\{a, b\}$
- (v) X has a proper subset A which is both open and closed.
- (vi) X has a proper subset A such that $\overline{A} \cap \overline{X} = \phi$.

12

OR

- (B) (a) Prove that connected subsets of ℝ are precisely the intervals. 6
 - (b) Prove that every closed and bounded interval has the fixed point property.
- 13. (A) (a) Prove that a spare X is compact every if and only if every family of closed sets in X with the finite intersection property has nonempty intersection.
 - (b) Let (X, d) be a compact metric space, (Y,d') a metric space and $f: X \to Y$ a continuous function. Prove that f is uniformly continuous. 6

OR

- (B) Prove that the following are equivalent for a subset A of \mathbb{R}^n
 - (i) A is compact.
 - (ii) A has the Bolzano-Weierstrass property.
 - (iii) A is countably compact.
 - (iv) A is closed and bounded.

12

 $(5 \times 12 = 60 \text{ Marks})$