Reg	g. N	O. I
Naı	ne :	П муниматериям развити в при
		First Semester M.Sc. Degree Examination, March 2018 Branch: PHYSICS PH 213: Basic Electronics (2014 Admission Onwards)
Tim	ne: 3	Hours Max. Marks: 75
		PART – A
An	swe	r any five, each question carries three marks.
	a)	Explain the Miller effects in amplifier circuits.
	b)	Draw a logic diagram that will divide the input clock frequency 16. Use negative edge triggered JK Flip-flop.
	c)	Explain the working and applications of IMPATT diode.
	d)	What is a universal shift register?
	e)	What is the advantages of synchronous counter over an asynchronous counter?
	f)	Explain the working of an LED.
	g)	What is the difference between active and passive transducer?
	h)	What are the important sources of attenuation in optical fibres? $(5\times3=15 \text{ Marks})$
		PART - B
11	. A)	a) Describe the working of BJT.
		b) Explain in detail about the high frequency analysis of BJT.
	B)	a) What is Schmitt Trigger? Discuss its operation.
		b) Design a triangular wave generator using two op-amps.
		P.T.O

III. A) a) With a neat diagram, explain the working of a bidirectional shift register. b) Compare the RS and JK flip-flops. What are the advantages of master slave flip-flops? OR B) a) Describe the working of an arithmetic logic unit with a neat diagram. b) Draw the circuit diagram of binary adder and explain its working with an example. 8 IV. A) a) Write an essay on working of Photodetector. b) Describe optical fibre as a waveguide. B) a) What are the important components of a cathode ray oscilloscope? And explain its working. b) Describe the principle of working of thermistor with a diagram. $(3\times15=45 \text{ Marks})$ PART - C

Answer any three, each question carries 5 marks.

- V. a) A common source amplifier uses FET with drain resistor $r_a = 100 \text{ k}\Omega$ and $\mu = 10$. Determine the voltage gain for load resistor R, of 500 k Ω .
 - b) Design a bandpass filter with $f_1 = 500$ Hz and $f_2 = 2.5$ kHz for passband gain of 5. Draw the circuit diagram.
 - c) Design an astable multivibrator for an output frequency of 10 kHz. Draw the circuit diagram.
 - d) In the summing amplifier (inverting mode), the input signal to be combined are $V_1 = 3V$, $V_2 = 2V$ and $V_3 = 1V$. The input resistors are $R_1 = R_2 = R_3 = 3k\Omega$. The feedback resistor $R_r = 1k\Omega$, considering ideal op-amp determine the V_o.
 - e) 1mA meter movement with an internal resistance of 100Ω is to be converted in to a 0-100 mA ammeter. Calculate the value of the shunt resistor required.
 - f) An optical fibre has core diameter of 6 µm and operate with infrared light at 1.31 µm. It has a numerical aperture of 0.34, find the number of modes it $(3\times5=15 \text{ Marks})$ will support.