(Pages: 3)

Reg. No.:	Day No.					
Name :	Reg. No. :		********			
있는 경영하다 원리를 다 가다다면 하다면 하다면 하다면 되었다.	Name :	*************				

2

SDE

Mathematics

MM 241: COMPLEX ANALYSIS - II

(2017 Admission Onwards)

Max. Marks: 75 Time: 3 Hours

Answer either Part A or Part B of each question Instructions: 1)

> All questions carry equal marks. 2)

(A) State and prove the Arzela-Ascoli theorem.

15

- Let H(G) be the collection of analytic functions on G which can be treated as a subset of $C(G,\mathbb{C})$. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G,\mathbb{C})$ such that $f_n \to f$ then prove that f is analytic and $f_n^{(k)} \to f^{(k)}$ for each integer $k \ge 1$.
 - State and prove Hurwitz's theorem.

8

(A) Let G be a region and let $\{a_i\}$ be a sequence of distinct points in G with no limit point in G. Let $\{m_i\}$ be a sequence of integers. Then prove that there is an analytic function f defined on G whose only zeros are at the points a_i . Also prove that a_i is a zero of f of multiplicity m_i 15

- (B) (a) Show that $\cos \pi z = \prod_{n=1}^{\infty} \left[1 \frac{4z^2}{(2n-1)^2} \right]$
 - (b) State and prove the Bohr-Mollerup theorem.
- III. (A) (a) Prove that for Re z > 1, $\zeta(z)\Gamma(z) = \int_0^\infty (e^t 1)^{-1} t^{z-1} dt$
 - (b) Let γ be a rectifiable curve and let K be a compact set such that $K \cap \{\gamma\} = \phi$. If f is a continuous function on $\{\gamma\}$ and $\epsilon > 0$ then prove that there is a rational function R(z) having all its poles on $\{\gamma\}$ and such that $\left|\int_{\gamma} \frac{f(w)}{w-z} dw R(z)\right| < \epsilon$ for all z in K.

OF

(B) State and prove Mittag- Leffler's theorem.

IV. (A) State and prove Schwarz Reflection principle.

OR

- (B) (a) Let $\gamma:[0,1]\to\mathbb{C}$ be a path from a to b and let $\{(f_t,D_t)\colon 0\leq t\leq 1\}$ and $\{(g_t,B_t)\colon 0\leq t\leq 1\}$ be analytic continuations along γ such that $[f_0]_a=[g_0]_a$. Then prove that $[f_1]_b=[g_1]_b$.
 - (b) State and prove Monodromy theorem.

(A) (a) Let G be a region and suppose that u and v are two continuous real valued functions on G with mean value property. Prove that if there is

a point a in the extended boundary $\partial_{\infty}G$, $\lim_{z\to a}\sup u(z)\leq \lim_{z\to a}\inf v(z)$ then either u(z)< v(z) for all z in G or u=v.

(b) Let $D=\{z:|z|<1\}$ and suppose that $f:\partial D\to\mathbb{R}$ is a continuous function. Then prove that there is a continuous function $u:D^-\to\mathbb{R}$ such that

- (i) u(z) = f(z) for z in ∂D .
- (ii) u is hormonic in D.

8

15

8

OR

(B) (a) Derive Jensen's formula.

7

(b) Let f be an entire function of genus μ . Prove that for each positive number α there is a number r_0 such that for $|z| > r_0$, $|f(z)| < \exp\left(\alpha |z|^{\,\mu+1}\right)$.

 $(5 \times 15 = 75 \text{ Marks})$

3