(Pages : 3)

E - 5120

Reg.	No.	•	••	• 1		 	 	• •	•	 •	•	• •	•	٠.		٠.	•	•
Name) i								2 120									

Second Semester M.Sc. Degree Examination, October 2018 Branch: Chemistry CH/CL/CA/CM 221: INORGANIC CHEMISTRY – II (2016 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

SECTION - A

Answer any two among (a), (b) and (c) from each question. Each sub-question carries 2 marks.

- 1. a) Describe the structures of P₄S₇ and P₄S₁₀.
 - b) Drive the possible 'styx' numbers for B₄H₁₀.
 - c) On the basis of Wade's rule, predict the structure of C₂B₉H₁₃.
- 2. a) Ti³⁺ and Cu²⁺ have same terms and same number of bands but have different magnetic moments.
 - b) Explain the increase and decrease in Δ_0 values for $[Fe(H_2O)_6]^{2+} = 10400 \text{ cm}^{-1}$; $[Fe(H_2O)_6]^{3+} = 13700 \text{ cm}^{-1}$; and $[Co(H_2O)_6]^{2+} = 9300 \text{ cm}^{-1}$; $[Co(H_2O)_6]^{3+} = 18200 \text{ cm}^{-1}$.
 - c) The magnetic moment of $[Mn(CN)_6]^{3-}$ is 2.8 B.M. while the magnetic moment of $[MnBr_4]^{2-}$ is 5.9 B.M. What are the geometries of the complex ions?
- 3. a) Why X-rays are used as diffraction gratings for crystal structure determination?
 - b) Calculate the Miller indices of a crystal plane which cut through the crystal axes at (2a, 3b, 2c).
 - c) What is the difference between spinel and inverse spinel structures?

- 4. a) Zr and Hf cannot be separated easily. Why?
 - b) Comment on the various oxidation states exhibited by lanthanides.
 - c) How f orbitals split in a cubic crystal field?
- 5. a) What do you mean by Brillouin zone?
 - b) Explain the effect of temperature on the electrical conductance of (i) metals and (ii) semiconductors. Give reasons.
 - c) What are pyroelectrics? Mention their applications.

(2×10=20 Marks)

SECTION - B

Answer either (a) or (b) of each question. Each question carries five marks.

- 6. a) How stock synthesized borazine? Describe the synthesis of N-and B-substituted borazines. How borazine reacts with bromine?
 - b) How polythiazyl is synthesized? Explain its structure. Why it is considered as a one dimensional conductor?
- 7. a) How do Tanabe Sugano diagrams differ from Orgel diagrams ? Draw Tanabe Sugano diagram for $[V(H_2O)_6]^{3+}$ and explain the electronic transitions.
 - b) Discuss Gouy method for determination of magnetic moment of complexes.
- 8. a) Discuss with examples point, line and plane defects found in crystals.
 - b) Discuss the salient features of covalent, metallic and hydrogen bonded crystals.
- 9. a) Why the separation of lanthanides is difficult? Outline the different methods of separation of lanthanides.
 - b) Discuss the oxidations states, spectral and magnetic properties of actinides.
- 10. a) Discuss free electron theory of solids.
 - b) Discuss various methods of synthesis and purification of semiconducting materials.
 (5x5=25 Marks)

SECTION - C

Answer any three questions and each question carries 10 marks.

- 11. What are carboranes? How carboranes can be converted to metallacarboranes? Describe the synthesis of metallacarboranes.
- 12. Explain the applications of magnetic susceptibility measurements for the study of structures of metal complexes.
- 13. Describe the structures of zinc blende, rutile, nickel arsenide and perosvskite.
- 14. Write an account of trans-uranium elements and their stabilities.
- 15. Discuss the band theory of solids and its application in the classification of materials into conductors, semiconductors and insulators? (10×3=30 Marks)