(Pages: 6)

Reg. No.	:	•••••	 	 •
Name:			 	

Third Semester B.Sc. Degree Examination, January 2023 First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry and Polymer Chemistry

MM 1331.2 : MATHEMATICS III — LINEAR ALGEBRA, PROBABILITY THEORY AND NUMERICAL SOLUTIONS

(2021 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Give an example of a square matrix.
- 2. What is an elementary matrix?
- 3. Define a regular linear transformation.
- 4. Define eigen value of a matrix.
- 5. Find the number of permutations of all the letters of the word 'Committee'.
- 6. What is a random variable?
- 7. Write two properties of normal distribution.

- 8. The iterative formula for finding the reciprocal of N is $x_{n+1} = -----$
- 9. Evaluate $\Delta \tan^{-1} x$.
- 10. State trapezoidal rule.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. These questions carry 2 marks each.

- 11. Find the rank of the matrix $\begin{bmatrix} 2 & 4 & 6 \\ 4 & 8 & 12 \end{bmatrix}$.
- 12. Find the value of k for which the system of equations (3k-8)x+3y+3z=0, 3x+(3k-8)y+3z=0, 3x+3y+(3k-8)z=0 has a nontrivial solution.
- 13. State Cayley-Hamilton theorem and find the characteristic equation of $\begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$.
- 14. Find the eigen valve of the matrix $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.
- 15. Show that for any square matrix A, A and A' have the same eigen values.
- 16. What is the chance that a leap year selected at random will contain 53 Sundays?
- 17. Find the probability of getting a king of red colour from a well shuffled deck of 52 cards?
- 18. Evaluate p(A/B) and p(B/A) given p(A) = 1/4 and p(B) = 1/3.
- 19. In 256 sets of 12 tosses of a coin, in how many cases, one can expect 8 heads and 4 tails?

- 20. Use a binomial distribution to calculate P(X=0) and P(X=1).
- 21. Suppose 5 cards are drawn at random from a pack of 52 cards. If all cards are red, find the probability that all of them are hearts.
- 22. Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places.
- 23. Evaluate $\sqrt{5}$ by Newton's iteration method.
- 24. Find the missing term in the table

- 25. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using trapezoidal rule.
- 26. Find a solution using Simpson's 1/3 rule

 $(8 \times 2 = 16 \text{ Marks})$

Answer any six questions. These question carry 4 marks each.

27. Find the inverse of the matrix
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$
.

28. Find x, y, z and w given that
$$3\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 5 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 6 & x+y \\ z+w & 5 \end{bmatrix}$$
.

29. Show that the matrix
$$\begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$$
 is orthogonal.

30. Find the eigen values and eigen vectors of the matrix
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
.

31. Verify Cayley – Hamilton theorem for the matrix
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 and find its inverse.

- 32. Two cards are drawn in succession from a pack of 52 cards. Find the chance that the first is a king and the second queen if the first card is
 - (a) replaced (b) not replaced.
- 33. Three identical boxes contain red and white balls. The first box contains 3 red and 2 white balls, the second box has 4 red and 5 white balls, and the third box has 2 red and 4 white balls. A box is chosen very randomly and a ball is drawn from it. If the ball that is drawn out is red, what will be the probability that the second box is chosen?
- 34. A die is tossed thrice. A success is "getting 1 or 6" on a toss. Find the mean and variance of the number of successes.
- 35. Find the cubic polynomial which takes the following values :

Hence evaluate f(4).

36. If
$$y_{10} = 3$$
, $y_{11} = 6$, $y_{12} = 11$, $y_{13} = 18$, $y_{14} = 27$, find y_4 .

- 37. Use Trapezoidal rule to estimate the integral $\int_0^2 e^{x^2} dx$ taking 10 intervals.
- 38. Find y(0.2) for y'= x^2y -I, y(0) =1 with step length 0.1 using Taylor series method.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. These question carry 15 marks each.

39. Reduce the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ to normal form and hence find the rank.

- 40. Investigate the value of λ and μ so that the equations 2x+3y+5z=9, 7x+3y-2z=8, $2x+3y+\lambda z=\mu$ have
 - (a) No solution (b) a unique solution (c) an infinite number of solutions.
- 41. A biased coin is tossed till a head appears for the first time
 - (a) What is the probability that the number of required tosses is odd.
 - (b) Two persons A and B toss an unbiased coin alternatively on the understanding that the first who gets the head wins. if A starts the game, find their respective chance of winning.
- 42. A random variable X has the following probability function:

$$x = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7$$

 $p(x) = 0 + k + 2k + 2k + 3k + k^2 + 2k^2 + 7k^2 + k$

- (a) Find the value of k.
- (b) Evaluate
 - (i) P(X < 6)
 - (ii) $P(X \ge 6)$ and
 - (iii) P(0 < X < 5).

- 43. Using Newton's iterative method, find the real root of the equation $3x = \cos x + 1$.
- 44. Apply Gauss-Jordan method to solve the equations

$$x+y+z=9$$
, $2x-3y+4z=13$, $3x+4y+5z=40$.

 $(2 \times 15 = 30 \text{ Marks})$

as we strait a library in

/D	20	-	61
ľ	ay	es	U)

Reg. No.	:	
Name :		

Third Semester B.A. Degree Examination, January 2023

First Degree Programme under CBCSS

Mathematics

Complementary Course for Economics

MM 1331.5: MATHEMATICS FOR ECONOMICS - III

(2021 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION

All the first ten questions are compulsory. Each question carries 1 marks.

- 1. Find $\int x^{-}dx$.
- 2. Find $\int 3e^x dx$.
- 3. Evaluate $\int 5x^4 dx$.
- 4. Find $\int \sqrt{t} dt$.
- 5. Find $\int (x^2 1) dx$.
- 6. Define identity matrix.

8. Give an example of a diagonal matrix.

9. Find
$$\begin{bmatrix} 1 & -2 & 4 \\ 2 & 5 & -3 \end{bmatrix} + \begin{bmatrix} -1 & -5 & -6 \\ 0 & 1 & 3 \end{bmatrix}$$
.

10. Find
$$\begin{vmatrix} 3 & -2 \\ 1 & 0 \end{vmatrix}$$
.

$$(10 \times 1 = 10 \text{ Marks})$$

SECTION - II

Answer any eight questions. Each question carries 2 marks.

11. Find
$$\int x e^x dx$$
.

12. Find
$$\int (x+1)^2 dx$$
.

13. Find
$$\int (x^5 - 3x) dx$$
.

14. Integrate
$$\frac{4x^2 + 2 + \sqrt{x}}{x^2}$$
.

15. Evaluate
$$\int \left(5e^x + \frac{3}{x^2}\right) dx$$
.

16. Find
$$\int \sqrt{x^3} dx$$
.

17. Find
$$\int (3x)^{-4} dx$$
.

18. Find
$$\int_{0}^{1} x^3 dx$$
.

19. If
$$A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, find AB.

20. Define symmetric matrix. Give an example.

21. If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$, find $(A+B)'$.

22. Let
$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$
. Verify whether $B = \frac{1}{6} \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$ is the inverse of A.

23. Check whether the matrix
$$\begin{bmatrix} 6 & 3 \\ 8 & 4 \end{bmatrix}$$
 is singular.

24. Define a triangular matrix. Give an example.

25. If
$$A = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}$$
, find A^2 .

26. Solve by Cramer's rule.

$$3x+4y=5$$
$$3x-4y=2$$

Answer any six questions. Each question carries 4 marks.

27. Find
$$\int \frac{3-x^2}{x^2} dx$$
.

28. Integrate $(5x+7)^8$.

 $(8 \times 2 = 16 \text{ Marks})$

30. Integrate
$$2x(x^2+1)$$
.

31. Evaluate
$$\int_{1}^{4} \sqrt{x} dx$$
.

32. Give the marginal cost function
$$f'(x)=2+x+x^2$$
, find the total cost function when fixed cost is 50 units; x being the output produced.

33. Compute
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$
 $\begin{bmatrix} 2 & 3 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$.

34. If
$$A = \begin{bmatrix} 9 & 1 \\ 4 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 5 \\ 7 & 12 \end{bmatrix}$, find the matrix X such that $3A + 5B + 2X = 0$.

35. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -1 \\ 6 & 7 \end{bmatrix}$, find $B'A'$.

36. Verify whether the matrix =
$$\begin{bmatrix} -6 & 3 & 5 \\ -10 & 2 & 8 \\ 5 & 2 & 3 \end{bmatrix}$$
 possess an inverse.

37. If
$$A = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$$
, find $A^2 - 5A + 7I$.

$$7x - 5y = 11$$
$$3x + 2y = 13$$

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 39. (a) Evaluate $\int \left(\frac{1}{x^2} + \frac{4}{x\sqrt{x}} + 2\right) dx$.
 - (b) Evaluate $\int 3x^2 e^{5x} dx$.
 - (c) Evaluate $\int_{1}^{3} (1+3x-x^2)dx$.
- 40. If $MR = 16 x^2$, find the total revenue, average revenue and demand.
- 41. If the marginal revenue function is $: \rho_m = \left\{ \frac{ab}{(x+b)^2} C \right\}$, show that $p = \left\{ \frac{ab}{(x+b)} C \right\}$ is the demand law.
- 42. (a) If $A = \begin{bmatrix} 7 & 1 \\ 0 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 2 \\ -1 & 3 \end{bmatrix}$. Find (A+B)(C+D).
 - (b) Find the inverse of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}$.
- - (b) Compute $\begin{bmatrix} 1 & 2 & -3 \\ -4 & 3 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 2 & 3 & 1 \\ 2 & -1 & 4 & 0 & -3 \\ -3 & 0 & 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

44. (a) Find the adjoint of
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
.

(b) Solve the following set of equations using Cramer's rule.

$$7x-y-z=0$$

$$10x-2y+z=8$$

$$6x+3y-2z=7$$

 $(2 \times 15 = 30 \text{ Marks})$

7

Se Westralibrary in

Reg. No.	:	
Name :		

Third Semester B.A. Degree Examination, January 2023

First Degree Programme under CBCSS

Mathematics

Complementary Course for Economics

MM 1331.5: MATHEMATICS FOR ECONOMICS - III

(2021 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION

All the first ten questions are compulsory. Each question carries 1 marks.

- 1. Find $\int x dx$.
- 2. Find $\int 3e^x dx$.
- 3. Evaluate $\int 5x^4 dx$.
- 4. Find $\int \sqrt{t} dt$.
- 5. Find $\int (x^2 1) dx$.
- 6. Define identity matrix.

7. What is the transpose of
$$\begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 1 & 0 \end{bmatrix}$$
.

8. Give an example of a diagonal matrix.

9. Find
$$\begin{bmatrix} 1 & -2 & 4 \\ 2 & 5 & -3 \end{bmatrix} + \begin{bmatrix} -1 & -5 & -6 \\ 0 & 1 & 3 \end{bmatrix}$$
.

10. Find $\begin{vmatrix} 3 & -2 \\ 1 & 0 \end{vmatrix}$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each question carries 2 marks.

11. Find
$$\int x e^x dx$$
.

12. Find
$$\int (x+1)^2 dx$$
.

13. Find
$$\int (x^5 - 3x) dx$$
.

14. Integrate
$$\frac{4x^2 + 2 + \sqrt{x}}{x^2}$$
.

15. Evaluate
$$\int \left(5e^x + \frac{3}{x^2}\right) dx$$
.

16. Find
$$\int \sqrt{x^3} dx$$
.

17. Find
$$\int (3x)^{-1} dx$$
.

18. Find $\int_{0}^{1} x^3 dx$.

19. If
$$A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, find AB.

20. Define symmetric matrix. Give an example.

21. If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$, find $(A+B)'$.

22. Let
$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$
. Verify whether $B = \frac{1}{6} \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$ is the inverse of A .

- 23. Check whether the matrix $\begin{bmatrix} 6 & 3 \\ 8 & 4 \end{bmatrix}$ is singular.
- 24. Define a triangular matrix. Give an example.

25. If
$$A = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}$$
, find A^2 .

26. Solve by Cramer's rule.

$$3x+4y=5$$
$$3x-4y=2$$

SECTION - III

$$(8 \times 2 = 16 \text{ Marks})$$

Answer any six questions. Each question carries 4 marks.

27. Find
$$\int \frac{3-x^2}{x^2} dx$$
.

28. Integrate
$$(5x+7)^8$$
.

- 29. Integrate x2ex.
- 30. Integrate $2x(x^2+1)$.
- 31. Evaluate $\int_{1}^{4} \sqrt{x} dx$.
- 32. Give the marginal cost function $f'(x)=2+x+x^2$, find the total cost function when fixed cost is 50 units; x being the output produced.
- 33. Compute $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$.
- 34. If $A = \begin{bmatrix} 9 & 1 \\ 4 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 5 \\ 7 & 12 \end{bmatrix}$, find the matrix X such that 3A + 5B + 2X = 0.
- 35. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 6 & 7 \end{bmatrix}$, find B'A'.
- 36. Verify whether the matrix = $\begin{bmatrix} -6 & 3 & 5 \\ -10 & 2 & 8 \\ 5 & 2 & 3 \end{bmatrix}$ possess an inverse.
- 37. If $A = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$, find $A^2 5A + 7I$.
- 38. Find the solution of the following system of equations by Cramer's rule

$$7x - 5y = 11$$
$$3x + 2y = 13$$

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

39. (a) Evaluate
$$\int \left(\frac{1}{x^2} + \frac{4}{x\sqrt{x}} + 2 \right) dx$$
.

(b) Evaluate
$$\int 3x^2e^{5x}dx$$
.

(c) Evaluate
$$\int_{1}^{3} (1+3x-x^2)dx$$
. 5

40. If
$$MR = 16 - x^2$$
, find the total revenue, average revenue and demand.

41. If the marginal revenue function is
$$: p_m = \left\{ \frac{ab}{(x+b)^2} - C \right\}$$
, show that $p = \left\{ \frac{ab}{(x+b)} - C \right\}$ is the demand law.

42. (a) If
$$A = \begin{bmatrix} 7 & 1 \\ 0 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 2 \\ -1 & 3 \end{bmatrix}$. Find $(A+B)(C+D)$.

(b) Find the inverse of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}$$
.

43. (a) Find the value of
$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & 5 & 4 \\ 6 & 1 & 0 \end{vmatrix}$$
.

(b) Compute
$$\begin{bmatrix} 1 & 2 & -3 \\ -4 & 3 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 2 & 3 & 1 \\ 2 & -1 & 4 & 0 & -3 \\ -3 & 0 & 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

44. (a) Find the adjoint of
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
.

8

(b) Solve the following set of equations using Cramer's rule.

$$7x - y - z = 0$$

 $10x - 2y + z = 8$
 $6x + 3y - 2z = 7$
(2 × 15 = 30 Marks)

35 Acottalily at A.

(Pages : 6)

Reg. No.	:	
Name ·		

Third Semester B.Sc. Degree Examination, January 2023 First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry and Polymer Chemistry

MM 1331.2 – Mathematics III : LINEAR ALGEBRA, PROBABILITY THEORY AND NUMERICAL METHODS

(2019 - 2020 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. Each question carries 1 mark.

- 1. Define the rank of a matrix.
- 2. Evaluate the determinant $\begin{vmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{vmatrix}$.
- 3. What is the magnitude of a vector?
- 4. Define Kronecker δ .

- 5. What is the scalar product of two vectors?
- 6. What is the sample space of an event?
- 7. There are 10 chairs in a row and 8 people to be seated. In how many ways can this be done?
- 8. Write the expression for variance of a random variable x and explain the terms.
- 9. Write Baye's formula for conditional probability.
- 10. What is an algebraic equation?

 $(10 \times 1 = 10 \text{ Marks})$

Answer any eight questions Each question carries 2 marks.

- 11. Find the rank of the matrix $\begin{pmatrix} 1 & 1 & 2 \\ 2 & 4 & 6 \\ 3 & 2 & 5 \end{pmatrix}$.
- 12. Evaluate the determinant $\begin{vmatrix} 1 & -5 & 2 \\ 7 & 3 & 4 \\ 2 & 1 & 5 \end{vmatrix}$
- 13. Find the cross product of the vectors A=2i+j-k and B=i+3j-2k.
- 14. Find the symmetric equation of the line through (1, -1, -5) and (2, -3, -3).

- 15. Find the product of A and B if $A = \begin{pmatrix} 4 & 2 \\ -3 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 5 & 3 \\ 2 & 7 & -4 \end{pmatrix}$.
- 16. Define linear functions.
- 17. Find the probability that a single card drawn from a shuffled deck of cards will be either a diamond or a king.
- 18. Two dice are rolled. What is the probability that the sum is ≥ 10 ?
- 19. Define mutually exclusive events.
- 20. If P(A) = 0.07755, P(A|B) = 0.038, find $P_A(B)$.
- 21. What is the probability that a number n, $1 \le n \le 99$. is divisible by both 6 and 10?
- 22. A club consists of 50 members. In how many ways can a president, vice president, secretary and treasurer be chosen?
- 23. Write Newton-Raphson iteration formula.
- 24. Write an iteration scheme for finding the square root of X.
- 25. What is binary chopping?
- 26. Evaluate the integral $I = \int_0^1 \frac{1}{1+x^2} dx$ using the trapezium rule.

 $(8 \times 2 = 16 \text{ Marks})$

Answer any six questions. Each question carries 4 marks.

27. Write and row reduce the augmented matrix for the equations:

$$x-y+4z=5$$

$$2x-3y+8z=4$$

$$x-2y+4z=9$$

28. Evaluate the determinant
$$D = \begin{bmatrix} 4 & 3 & 0 & 1 \\ 9 & 7 & 2 & 3 \\ 4 & 0 & 2 & 1 \\ 3 & -1 & 4 & 0 \end{bmatrix}$$

29. Using Cramer's rule solve the set of equations :

$$2x+3y=3$$
$$x-2y=5$$

- 30. Find the equation of a line through (1, 0, -2) and perpendicular to the plane 3x-4y+z+6=0.
- 31. Find the distance between the lines r=i-2j+(i-k)t and r=2j-k+(j-i)t.
- 32. Which is the most probable sum in a toss of two dice? what is its probability?
- 33. Two students are working separately on the same problem. If the first student has probability $\frac{1}{2}$ of solving it and the second student has probability $\frac{3}{4}$ of solving it, what is the probability that atleast one of them solves it.?
- 34. Find the coefficient of x^8 in the binomial expansion of $(1+x)^{15}$.
- 35. Using Baye's formula find the probability of all heads in three tosses of a coin if you know that atleast one is a head?

- 36. Evaluate $I = \int_0^2 (x^2 3x + 4) dx$ using trapezium rule with h = 0.5.
- 37. Evaluate $I = \int_0^1 \frac{1}{1+x^2} dx$ using Gaussian integration.
- 38. Find an explicit formula that will generate a random number y distributed on $(-\infty, \infty)$ according to the Cauchy distribution $f(y) dy = \left(\frac{a}{\pi}\right) \frac{dy}{a^2 + y^2}$, given a random number ξ uniformly distributed on (0, 1).

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

39. Diagonalize
$$H = \begin{pmatrix} 2 & 3-i \\ 3+i & -1 \end{pmatrix}$$
.

(c)

- 40. Find the rotation matrix C if the quadratic surface $x^2 + 6xy 2y^2 2yz + z^2 = 24$ is rotated to principal axis.
- 41. A preliminary test is customarily given to the students at the beginning of a certain course.

The following data are accumulated after several years:

- (a) 95% of the students pass the course,
- (b) 96% of the students who pass the course also passed the preliminary test.

25% of the students who fail the course passed the preliminary test.

What is the probability that a student who failed the preliminary test will pass the course?

- 42. Derive the Poison density function $P_n = \frac{\mu^n}{n!} e^{-\mu}$.
- 43. Solve the simultaneous equations

$$x_1 + 6x_2 - 4x_3 = 8$$
$$3x_1 - 20x_2 + x_3 = 12$$
$$-x_1 + 3x_2 + 5x_3 = 3$$

using Gaussian elimination.

44. Explain any three Monte Carlo methods.

 $(2 \times 15 = 30 \text{ Marks})$

6

Reg. No.	:			•••
			0.20	
Namo :		-		

Third Semester B.A. Degree Examination, January 2023

First Degree Programme under CBCSS

Mathematics

Complementary Course for Economics

MM 1331.5: MATHEMATICS FOR ECONOMICS - III

(2019 - 2020 Admission)

Time: 3 Hours

Max. Marks: 80

PART A COLO

Answer all the questions. Each question carries 1 mark.

- 1. Evaluate the integral $\int e^{x+3} dx$.
- 2. Find the anti derivative of \sqrt{x} .
- 3. Evaluate the integral $\int (3x^4 + 5x^2 2)dx$.
- 4. Evaluate the integral $\int (1+x)^{2/3} dx$.
- 5. State the constant multiple property of integrals.
- 6. Write Taylor formula.
- 7. Write the geometric series with a = 1/9 and r = 1/3.
- 8. Write the Maclaurin series expansion of ex.
- 9. Determine whether the series $1 + 3 + 3^2 + 3^3 + \dots$ is convergent or divergent.
- 10. The sum of *n* terms of a series is $\frac{n}{2n+10}$, Find the sum of the series.

 $(10 \times 1 = 10 \text{ Marks})$

PART B

Answer any eight questions. Each question carries 2 marks.

- 11. Calculate the area under the parabola $y = x^2$ over the interval [0, 1].
- 12. Find the Integral $\int \frac{x^4 + 3x 2}{x} dx$.
- 13. Evaluate $\int \frac{x}{x^2 + 1} dx$.
- 14. Use integration by parts to evaluate $\int xe^{x} dx$.
- 15. Evaluate $\int_{0}^{10} \frac{1}{2x+3} dx$.
- 16. Find the total cost function if the cost of zero output is c and the marginal cost of output x is $\pi_m = ax + b$.
- 17. Find the sum of the series $1 \frac{1}{2} + \frac{1}{4} \frac{1}{8} + \dots$
 - 18. Find the binomial series for the function $(1+x)^4$, |x| < 1.
 - 19. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)!}$
 - 20. Show that the accumulated value of a constant income stream a will be $\frac{a}{r}(e^{rx}-1)$.
 - 21. Find a power series representation for ln(1-x) on (-1, 1).
- 22. Use Simpson's rule with n = 4 to approximate $\int_{0}^{1} \frac{dx}{x+1}$.
- 23. If f(x) = f'(x), what is f(x)?
- 24. Find the anti-derivative of $\frac{ax+b}{\sqrt{x}}dx$.

- 25. Describe the concept of capitalization.
- 26. Find the sum of $1 \frac{1}{2!} + \frac{1}{4!} \frac{1}{6!} + \dots$

 $(8 \times 2 = 16 \text{ Marks})$

PART C

Answer any six questions. Each questions carries 4 marks.

27. Show that

(a)
$$\int \frac{e^x}{1+e^x} dx = \log(1+e^x) + c$$

(b)
$$\int \frac{e^x + e^{-x}}{e^x - e^{-x}} dx = \log(e^x - e^{-x}) + c$$

- 28. The marginal cost of producing x units of some commodity is $1+x+3x^2$ and fixed costs are 150. Find the total cost function
- 29. Find the area under the straight line y = ax + b above the x-axis between the coordinates x = 0 and x = 1.
- 30. Use the trapezoidal rule with n = 4 to estimate $\int_{0}^{2} x^{2} dx$.
- 31. Expand ln(2 + x) around x = 0.
- 32. Find the sum of the series $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$
- 33. Find the Maclaurin series for sin x.
- 34. Show that the length of life of the capital good $f(t) = b\sqrt{t}$, b a constant, varies inversely with respect to the rate of interest.
- 35. Find a power series representation for $f(x) = \frac{1}{1-x^2}$ on (-1, 1) by differentiating a power series representation of $f(x) = \frac{1}{1-x}$.

36. Evaluate ∫log x dx.

37. If
$$y = \int_{0}^{x^3} \cos t^2 dx$$
, find $\frac{dy}{dx}$.

38. Show that the area between the rectangular hyperbola $xy = \alpha^2$ and the x-axis and between the ordinates at x = a and x = b is $\alpha^2 \log \frac{b}{a}$, if a and b have the same sign.

 $(6 \times 4 = 24 \text{ Marks})$

PART D

Answer any two questions. Each questions carries 15 marks.

- 39. Evaluate the following integrals
 - (a) ∫x sin x dx
 - (b) $\int x^3 e^x dx$
 - (c) $\int 5^{2x+3} dx$.
- 40. Using Simpson's rule find the area under the curve $y = e^{-x^2}$ above the x-axis and between the ordinates x = 0 and x = 2 by dividing the interval into 10 equal parts.
- 41. (a) Show that the Taylor series generated by e^x at x = 0 converges to f(x) for every real x.
 - (b) Find the Taylor series generated by f(x) = 1/x at a = 2.
- 42. Explain Domar's model of public debt and national income.
- 43. For |x| < 1, show that $(1+x)^m = 1 + \sum_{k=1}^{\infty} mC_k x^k$.
- 44. State and prove fundamental theorem of Calculus, Part 1.

 $(2 \times 15 = 30 \text{ Marks})$

P - 3803

(Pages: 4)

Reg.	No.	:	 	

Name :

Third Semester B.A. Degree Examination, January 2023.

First Degree Programme under CBCSS

Mathematics

Complementary Course for Economics

MM 1331.5: MATHEMATICS FOR ECONOMICS III

(2013-2018 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. Evaluate the integral $\int e^{x+3} dx$.
- 2. Find the anti derivative of \sqrt{x} .
- 3. Evaluate the integral $\int (3x^4 + 5x^2 2)dx$.
- 4. Evaluate the integral $\int (1+x)^{2/3} dx$.
- 5. State the constant multiple property of integrals.
- 6. Write Taylor formula.
- 7. Write the geometric series with a = 1/9 and r = 1/3.

- 8. Write the Maclaurin series expansion of e^x .
- 9. Determine whether the series $1+3+3^2+3^3+...$ is convergent or divergent.
- 10. The sum of *n* terms of a series is $\frac{n}{2n+10}$. Find the sum of the series.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Calculate the area under the parabola $y = x^2$ over the interval [0,1].
- 12. Find the integral $\int \frac{x^4 + 3x 2}{x} dx$.
- 13. Evaluate $\int \frac{x}{x^2+1} dx$.
- 14. Use integration by parts to evaluate $\int xe^x dx$.
- 15. Evaluate $\int_{0}^{10} \frac{1}{2x+3} dx$
- 16. Find the total cost function if the cost of zero output is c and the marginal cost of output x is $\pi_m = ax + b$.
- 17. Find the sum of the series $1 \frac{1}{2} + \frac{1}{4} \frac{1}{8} + \dots$
- 18. Find the binomial series for the function $(1+x)^4$, |x| < 1.
- 19. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)!}$

- 20. Show that the accumulated value of a constant income stream a will be $\frac{a}{r}(e^{rx}-1)$.
- 21. Find a power series representation for ln(1-x) on (-1,1).
- 22. Use Simpson's rule with n = 4 to approximate $\int_{-\infty}^{1} \frac{dx}{x+1}$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 mark.

Show that 23.

(a)
$$\int \frac{e^x}{1+e^x} dx = \log(1+e^x) + c$$

(a)
$$\int \frac{e^x}{1+e^x} dx = \log(1+e^x) + c$$
(b)
$$\int \frac{e^x + e^{-x}}{e^x - e^{-x}} dx = \log(e^x - e^{-x}) + c$$
The marginal cost. of producing x units of son

- 24. The marginal cost of producing x units of sonic commodity is $1+x+3x^2$ and fixed costs are 150. Find the total cost function.
- Find the area under the straight line y = ax + b above the x-axis between the coordinates x = 0 and x = 1.
- Use the trapezoidal rule with n = 4 to estimate $\int_{-\infty}^{\infty} x^2 dx$.
- 27. Expand In(2+x) around x=0.
- 28. Find the sum of the series $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}.$

- 29. Find the Maclaurin series for sin x.
- 30. Show that the length of life of the capital good $f(t) = b\sqrt{t}$, b a constant, varies inversely with respect to the rate of interest.
- 31. Find a power series representation for $f(x) = \frac{1}{1-x^2}$ on (-1,1) by differentiating a power series representation of $f(x) = \frac{1}{1-x}$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two question. Each question carries 15 marks.

- 32. Evaluate the following integrals
 - (a) $\int x \sin x \, dx$
 - (b) $\int x^3 e^x dx$
 - (c) $\int 5^{2x+3} dx$
- 33. Using Simpson's rule find the area under the curve $y = e^{-x^2}$ above the x-axis and between the ordinates x = 0 and x = 2 by dividing the interval into 10 equal parts.
- 34. (a) Show that the Taylor series generated by e^x at x = 0 converges to f(x) for every real x.
 - (b) Find the Taylor series generated by f(x) = 1/x at a = 2.
- 35. Explain Domar's model of public debt and national income.

 $(2 \times 15 = 30 \text{ Marks})$

(Pa	ages	 41
11 0	ayes	4)

Reg. No.	:	 •
Name :		

Third Semester B.Sc. Degree Examination, January 2023

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1341: ELEMENTARY NUMBER THEORY AND CALCULUS - I

(2018 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions.

- For every positive integer n, find n consecutive integers that are composite numbers.
- 2. Prove that there are infinitely many primes.
- 3. State Dirichlet's theorem.
- 4. State the Pigeonhole principle.
- 5. If $r(t) = t^2i + e^tj (2\cos \pi t)k$, find r'(t).
- 6. Prove that a straight line has zero curvature at every point.
- 7. Evaluate: $\int_0^2 r(t)dt$, where $r(t) = 2ti + 3t^2j$.

- 8. If f is a function of x, y and z, what is the gradient of f?
- 9. State the chain rule for partial derivatives if z = f(x, y), x = x(u), y = y(u).
- 10. Let $f(x, y) = y^2 e^x + y$. Evaluate f_{xyy} .

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions.

- 11. Using recursion, evaluate, (18, 30, 60, 75, 132).
- 12. Derive a necessary and sufficient condition for two positive integers to be relatively prime.
- 13. Prove that (a, b) = (a, a b).
- 14. Find the number of positive integers ≤ 2076 and divisible by neither 4 nor 5.
- 15. If r(t) is a differentiable vector valued function in 2 space or 3-space and ||r(t)|| is constant for all t, then show that r(t) and r'(t) are orthogonal vectors for all t.
- 16. State the Newton's laws of universal gravitation.
- 17. Show that the circle of radius a which centred at the origin has constant curvature $\frac{1}{a}$.
- 18. Evaluate the unit tangent vector to the graph of $r(t) = t^2i + t^3j$ at the point where t = 2.
- 19. Estimate an equation for the tangent plane and parametric equations for the normal line to the surface $z = x^2y$ at the point (2, 1, 4).
- 20. Find the directional derivative of $f(x, y, z) = x^2y yz^3 + z$ at (1, -2, 0) in the direction of the vector a = 2i + j 2k.

- 21. Evaluate $f_x(1,3)$ and $f_y(1,3)$ by finding $f_x(x,y)$ and $f_y(x,y)$ where $f(x,y) = 2x^3y^2 + 2y + 4x$.
- 22. Prove that $f(x, y) = x^2 + y^2$ is differentiable at the origin.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions.

- 23. Let e denote the highest power of 2 that divides n! and b the number of 1s in the binary representation of n. Then show that n = e + b.
- 24. Show that the gcd of the positive integers a and b is a linear combination of a and b.
- 25. Show that 3, 5 and 7 are the only three consecutive odd integers that are primes.
- 26. Find parametric equations of the tangent line to the circular helix $x = \cos t$, $y = \sin t$, z = t where $t = t_0$, and use that result to find parametric equations for the tangent line at the point $t = \pi$.
- 27. Find the curvature of the ellipse with vector equation $r = 2\cos t \, i + 3\sin t \, j$, $(0 \le t \le 2\pi)$ at the end points of the major and minor axes.
- 28. Derive Kepler's third law.
- 29. Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the y direction at the points $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$.
- 30. Verify whether the function $z = e^x \sin y + e^y \cos x$ satisfies the equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$
- 31. Locate all relative extrema and saddle points of $f(x, y) = 3x^2 2xy + y^2 8y$.

3

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions.

- 32. (a) Prove that there is no polynomial f(n) with integral coefficients that will produce primes for all integers n.
 - (b) Find the general solution of the LDE 6x + 8y + 12z = 10.
- 33. (a) State and prove the division algorithm.
 - (b) Show that the number of leap years l after 1600 and not exceeding a given year y is given by l = [y/4] [y/100] + [y/400] 388.
- 34. Suppose that a particle moves through 3 space so that its position vector at time t is $r(t) = ti + t^2j + t^3k$.
 - (a) Find the scalar tangential and normal components of acceleration at time t.
 - (b) Find the scalar tangential and normal components of acceleration at time t = 1.
 - (c) Find the vector tangential and normal components of acceleration at time t = 1.
 - (d) Find the curvature of the path at the point where the particle is located at time t = 1.
- 35. Find the points on the sphere $x^2 + y^2 + z^2 = 36$ that are closest to and farthest from the point (1, 2, 2).

 $(2 \times 15 = 30 \text{ Marks})$

(Pages: 6)

Reg. No.	:		
Name :		V	_

Third Semester B.Sc. Degree Examination, January 2023

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1341: ELEMENTARY NUMBER THEORY AND CALCULUS - I

(2019 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions.

- 1. For every positive integer n, find n consecutive integers that are composite numbers.
- 2. Prove that there are infinitely many primes.
- 3. State Dirichlet's theorem.
- 4. State the Pigeonhole principle.
- 5. If $r(t) = t^2i + e^tj (2 \cos \pi t)k$, find r'(t).
- 6. Prove that a straight line has zero curvature at every point.

- 7. Evaluate: $\int_0^2 r(t) dt$, where $r(t) = 2ti + 3t^2 j$.
- 8. If f is a function of x, y and z, what is the gradient of f?
- 9. State the chain rules for partial derivatives.
- 10. Let $f(x, y) = y^2 e^x + y$. Evaluate f_{xyy} .

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions.

- 11. Show that every composite number n has a prime factor $\leq |\sqrt{n}|$.
- 12. Using recursion, evaluate, (18, 30, 60, 73,132).
- Derive a necessary and sufficient condition for two positive integers to be relatively prime.
- 14. Prove that (a, b) = (a, a b).
- 15. Find the number of positive integers ≤ 2076 and divisible by neither four nor five.
- 16. Write a short note on twin primes.
- 17. If r(t) is a differentiable vector valued function in 2-space or 3-space and ||r(t)|| is constant for all t, then show that r(t) and r'(t) are orthogonal vectors for all t.
- State any two rules of integration of vector valued functions.
- 19. State the Newton's laws of universal gravitation.

- 20. Show that the circle of radius a which centred at the origin has constant curvature $\frac{1}{a}$.
- 21. Evaluate the unit tangent vector to the graph of $r(t) = t^2i + t^3j$ at the point where t = 2.
- 22. Estimate an equation for the tangent plane and parametric equations for the normal line to the surface $z = x^2y$ at the point (2, 1, 4).
- 23. Find the directional derivative of $f(x, y, z) = x^2y yz^3 + z$ at (1, -2, 0) in the direction of the vector a = 2i + j 2k.
- 24. Evaluate $f_x(1,3)$ and $f_y(1,3)$ by finding $f_x(x,y)$ and $f_y(x,y)$ where $f(x,y) = 2x^3y^2 + 2y + 4x.$
- 25. Write the steps to find the absolute extrema of a continuous function *f* of two variables on a closed and bounded set *R*.
- 26. Prove that $f(x, y) = x^2 + y^2$ is differentiable at the origin.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions.

- 27. Prove that there are $3 \lfloor n/2 \rfloor$ primes in the range n through n!, where $n \geq 4$.
- 28. Let e denote the highest power of 2 that divides n! and b the number of 1s in the binary representation of n. Then show that n = e + b.
- 29. Show that the gcd of the positive integers a and b is a linear combination of a and b.

- 30. Show that 3, 5 and 7 are the only three consecutive odd integers that are primes.
- 31. Find parametric equations of the tangent line to the circular helix $x = \cos t$, $y = \sin t$, z = t where $t = t_0$, and use that result to find parametric equations for the tangent line at the point $t = \pi$.
- 32. Suppose that a particle moves along a circular helix in 3-space so that its position vector at time t is $r(t) = (4\cos\pi t)i + (4\sin\pi t)j + tk$. Find the distance travelled and the displacement of the particle during time interval $1 \le t \le 5$.
- 33. Find the curvature of the ellipse with vector equation $r = 2\cos t \, i + 2\sin t \, j$, $(0 \le t \le 2\pi)$ at the end points of the major and minor axes.
- 34. Derive Kepler's third law.
- 35. Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the y- direction at the points $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$.
- 36. Verify whether the function $z = e^x \sin y + e^y \cos x$ satisfies the equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$
- 37. Locate all relative extrema and saddle points of $f(x, y) = 3x^2 2xy + y^2 8y$.
- 38. Use appropriate forms of the chain rule to find $\frac{\partial w}{\partial \rho}$ and $\frac{\partial w}{\partial \theta}$ where $w = x^2 + y^2 z^2, x = \rho \sin \phi \cos \theta, y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$.

 $(6 \times 4 = 24 \text{ Marks})$

Answer any two questions.

- 39. (a) Prove that there is no polynomial f(n) with integral coefficients that will produce primes for all integers n.
 - (b) Find the general solution of the LDE 6x + 8y + 12z = 10.
- 40. (a) State and prove the division algorithm.
 - (b) Show that the number of leap years *I* after 1600 and not exceeding a given year *y* is given by I = |y/4| |y/100| + |y/400| 388.
- 41. A shell fired from a cannon has a muzzle speed of 800 ft/s. The barrel makes an angle of 45° with the horizontal and, for simplicity, the barrel opening is assumed to be at ground level.
 - (a) Find parametric equations for the shell's trajectory.
 - (b) How high does the shell rise?
 - (c) How far does the shell travel horizontally?
 - (d) What is the speed of the shell at its point of impact with the ground?
- 42. Suppose that a particle moves through 3-space so that its position vector at time t is $r(t) = ti + t^2j + t^3k$.
 - (a) Find the scalar tangential and normal components of acceleration at time $\,t\,.$
 - (b) Find the scalar tangential and normal components of acceleration at time t = 1.
 - (c) Find the vector tangential and normal components of acceleration at time t = 1
 - (d) Find the curvature of the path at the point where the particle is located at time t=1

- 43. (a) A heat seeking particle is located at the point (2, 3) on a flat metal plate whose temperature at a point (x,y) is $T(x,y) = 10 8x^2 2y^2$. Find an equation for the trajectory of the particle if it moves continuously in the direction of maximum temperature increase.
 - (b) The length, width and height of a rectangular box are measured with an error of at most 5%. Use a total differential to estimate the maximum percentage error that results in these quantities are used to calculate the diagonal of the box.
- 44. Find the points on the sphere $x^2 + y^2 + z^2 = 36$ that are closest to and farthest from the point (1, 2, 2).

 (2 × 15 = 30 Marks)

de Weathalibrary in