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Second Semester M.Sc. Degree Examination, September 2022
Mathematics
MM 221 — ABSTRACT ALGEBRA
(2020 Admission Onwards)

Time : 3 Hours Max. Marks : 75

SECTION - A

Answer any five questions. Each question carries 3 marks.

1.

Let G=U(16), H={1,15} and K = {1, 9}.~ Are H and K isomorphic? Are G/H and
G/K isomorphic?

Prove that a group of order 105 contains a subgroup of order 35.

Express x® —x as a productof irreducible polynomials over Z».
Construct a field of order 9.
Find @.,(x).

If a and b are constructible numbers, give a geometric proof that a + b is
constructible.

Show, by an example, that if the order of a finite abelian group is divisible by 4,
the group need not have a cyclic subgroup of order 4.

Find the minimal polynomial for 1+%/2 +¥/4 over Q.

(5 x 3 =15 Marks)
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SECTION - B

Answer all questions. Each question carries 12 marks.

9.

10.

11.

(A) (a)

(b)

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

(A) (a)
(b)

Let G be an abelian group of prime-power order and let a be an
element of maximal order in G. Prove that G is the internal direct
product of (a)xK for some subgroup K in G. 9

Show, by example, that in a factor group G/H it can happen that
aH =bH but [a = |b|. 3

OR
Prove that the order of an element of a direct product of a finite number
of finite groups is the least multiple of'the order of the components of

the element. 7

Express U(165) as an internal direct product of proper subgroups in two
different ways. 5

Prove that any two Sylow. p-subgroups of a finite group G are
conjugate. 7

Prove that a group of order 175 is abelian. 5
OR

Suppose that G is a group of order 60 and G has a normal subgroup
N of order 2. Prove that G has a cyclic subgroup of order 30. 6

Prove that if G is a finite group and H is a proper normal subgroup of

largest order, then G/H is simple. 6

Prove that a finite extension of a finite extension is finite. 8

Find the splitting field for x® +x +1 over Z,. 4
OR
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12.

13.

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

Let f(x) be an irreducible polynomial over a field F and let E be a
splitting field of f(x) over F. Prove that all the zeros of f(x) in E have the
same multiplicity. 7

Find the degree and a basis of the splitting field of x° +x® +1 over Q.
5

Prove that the maximum degree of any irreducible factor of x® —x over

Zyis 3. 6
Prove that, for each positive divisor m of n, GF(p”) has a unique
subfield of order p™. Find the number of subfields of GF(625). 6
OR
Prove that an angle ¢ is constructible if and only if cosé is
constructible. 8
Prove that a 40° angle is not.constructible. 4
Find the Galois group of Q(“\/ﬁ,i) over Q. 6
Prove that @, (x) = ® (=) for all odd positive n. 6
OR
Let N be a normal subgroup of a group G. If both N and G/N are
solvable, prove that G is solvable. 6
Prove that @, (x)e Z[x]. 6

(5% 12 =60 Marks)
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Second Semester M.Sc. Degree Examination, September 2022
Mathematics

MM 224 — PARTIAL DIFFERENTIAL EQUATIONS AND
INTEGRAL EQUATIONS

(2020 Admission Onwards)

Time : 3 Hours Max. Marks : 75
PART — A

Answer any five questions. Each question.carries 3 marks.

1.  Solve the PDE xa—u+ya—u:0.
0X oy
2
2. Solve by Lagrange’s method (u]a_z 9z =y2.
X ) oX oy

3. Classify the given PDE x°u,, —2xyu,, +y?u,, +Xu, +yu, =0.
4.  Show that the derivative u, of a solution u(x,y) to wave equation will also be a
solution.
1

5. Find the eigen values of the Integral Equation y(s)=A[e*"'y(t)dt .
0

P.T.O.




6.

7.
8.

1

Find the resolvant kernel for the Integral Equation y(s)=f(s)+ A[e® 'y (t)dt.

0

Show that extremals of the arc length functionals are straight lines.

State Hamilton’s principle.

(5 x 3 =15 Marks)
PART - B

Answer all questions. Each question carries 12 marks.

9.

10.

(A) (a)

(b)

(B) (a)

(b)

(A) (a)

(b)

(B) (a)

(b)

Solve the partial differential equation u, +u, =2 with the initial

condition u(x,0) = x2. 9

State the generalized Transversality condition. 3
OR

Find the equation of the' surface satisfying the PDE

4yu3—u+g—u+2y =0 and passing through y2 +u? =1, x+u=2. 6
X oy

2
Solve the PDE uX+3y3uy:2 subject to the initial condition

u(x,1)=1+x. 6

Write the d-Alembert's solution to the wave equation

U, =Cc2u,,, u(x,0¥=0, u,(x,0)=cos x. 6

Reduce u,, = xzuyy to canonical form. 6
OR

Solve the initial value problem u, +2u, =0, u(0,y)=4e™* using the

method of separation of variables. 6

Sketch the regions in which the PDE yu,, —2u,, +xu,, =0 is elliptic,
parabolic and hyperbolic. 6
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11.

12.

13.

(A)

(B)

(A)

(B)

(A)

(B)

Establish the law of conservation of energy of the wave equation that

represents the motion of an infinite string. 12
OR
e . ou , d%u . - .
Solve the diffusion equation s = k8_2 with the initial condition
X
u(x,0)=e ™ using the method of Green’s function. 12
Find the resolvent kernel of the Integral Equation
1
y(s)=f(s)+A[(s +t)g(t)dt. 12
0
OR
1 1
Solve the Integral Equation y(s)=s + Af {st + (st)z}y(t)dt : 12
0

Extremize the functional :T ly.(x)] =

oO—N N

(y'? - y?Jaxy(0) =0, y(gj =1. 12

OR

X1
Find the minimal surface of the functional Jo[y (x)]=2r jy«/1+(y’) dx. 12
X2

(5 x 12 = 60 Marks)
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Second Semester M.Sc. Degree Examination, September 2022
Mathematics
MM 222 — REAL ANALYSIS I
(2020 Admission Onwards)

Time : 3 Hours Max. Marks : 75

PART - A

Answer any five questions. Each question carries '3 marks.

1.

Define Lebesgue outer measure and-prove that it is countably subadditive and
translation invariant.

Let f =g a.e. where f is a continuous function. Show that ess sup f=ess sup
g =sup f.

1 oo n
Show that [sin x log xdx = Zi
0 a=1(2n)(2n)!

Show that the derivatives of a continuous function are measurable.

Prove that the limit of a pointwise convergent sequence of measurable functions
is measurable.

Show that if 0 <a < e and 0< p < e then logx™" e LP (0, a).

State and prove Jensen’s inequality.

Show that if f, —f in measure and « is any real number, then of, — of in
measure.

(5 x 3 =15 Marks)
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PART - B
Answer any questions choosing either (a) or (b). Each question carries 12 marks.

9. (A) (a) Prove thatthe interval (a, =) is measurable. 3

(b) Prove that the Lebesgue outer measure of an interval is its length. 9
OR

(B) (@) Let <E;> be a sequence of measurable sets. Prove that

m(U Ei)s > mE; . If the sets E; are pairwise disjoint, then prove that

(b) Give an example of a measurable set that is not a Borel set. 6

10. (A) Prove that if f is Riemann integrable and bounded over the finite interval

b b
[a,b], then f is integrable and R|[f dx = [f dx. What can you say of the
a a

converse? Justify. 12

OR

X
(B) (a) Provethatif f e L(a, b) then F(x)= J'f (t) dt is a continuous function on

a

[a, b] and is of bounded variation on [a, b]. 6

(b) If fis a finite-valued monotone increasing function defined on the finite

b
interval [a, b], then prove that f’ is measurable and If’dx <f(b)-f(a).
a

6
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11.

12.

13.

(A)

(B)

(A)

(B)

(A)

(B)

Prove that if 4 is a o -finite measure on a ring R, then it has a unique
extension to the o -ring S(R). 12

OR
If 1 is a measure on a o-ring S, then prove that the class S of sets of the

form EAN for any sets E, N such that Ee S while N is contained in some
set in S of zero measure, is a o-ring and the set function uz defined by

ZZ(EAN) = u(E) is a complete measure on S 12

(a) Prove that every function that is convex on an open interval is
continuous. 6

(b) State and prove Minkowski’s inequality. Also discuss when equality
occurs. 6

OR
Prove that for p >1, LP (u) is a complete metric space. 12

Prove that the signed measureon [[X, S]] has a Jordan decomposition.

Show also that this decomposition is unique and minimal. 12
OR
State and prove the Radon-Nikodym theorem. 12

(5% 12 = 60 Marks)
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Second Semester M.Sc. Degree Examination, September 2022
Mathematics
MM 223 - TOPOLOGY I

(2020 Admission onwards)

Time : 3 Hours Max. Marks : 75

PART - A

Answer any five questions. Each question carries 3 marks.

1.

Prove or disprove : countable product,of second countable spaces is second
countable.

Prove that the projection maps: p; : X — X;, where X =X;xX,X....xX,, are
continuous.

Show that R/ ~ is topologically equivalent to a circle.

Define T, -spaces for i = 1, 2"and give an example for a T,-space which is not T, .

Prove or disprove : product of any family of regular spaces need not be regular.

If f:X —Y then show that f is continuous at x, e X if and only if whenever
F — X in Xthen f (F)—>1f(xy)in Y.

Prove or disprove : every contractible space is simply connected.

Is the set of end points E = {a, b} a retract of a closed interval [a, b] where a<b ?
Justify your answer.

(5 x 3 =15 Marks)




PART - B

Answer all questions. Each question carries 12 marks.

9.

10.

11.

A.

(a) Prove that product of an arbitrary Collection of connected spaces is
connected. 6

(b) Define (i) Weak topology (ii) Projection map (iii) Quotient space. 6
OR

(a) Prove that product of a finite number of compact spaces is compact. 6

(b) Let X and Y be spaces and f: X —Y be a continuous function from

X onto Y. Prove that the natural correspondence h: X/ ~—Y defined
byh([x])=f(x), xe X is a homeomorphism if and only if Y has the

quotient topology determined by f. 6

State and prove Tietze extension theorem. 12
OR

(a) Show that every metric-space is normal. 6

(b) Prove that Sorgenfrey plane is regular but not normal. 6

State and prove Tychonoff theorem; prove at least one significant result
used in it. 12

OR

(a) Show that .# has x as a cluster point if and only if there is a filter ¢
finer than % which converges to x. 6

(b) If X is a first countable space and E c X, then show that x e E if and
only if there is a sequence (X,,) contained in E which converges to x. 6




12.

13.

(a)

(b)

(a)

(b)

(@)

Let X be a path connected space and xy,X; points of X. Show that the

fundamental groups 7,(X, X,) and z,(X, x4) are isomorphic. 6
State and prove covering homotopy property. 6
OR

Show that the homotopy class [c], where c is the constant loop whose
only value is X, is the identity element for z,(X, X;). 6

Prove that the fundamental group r, (S" is isomorphic to the additive

group Z of integers. 6

If D is a deformation retract of a space-X and X, is a point of D, show

that z,(X, x,) and 7(D,X,) are isomorphic. 6

(b) State and prove Brouwer fixed point theorem. 6
OR

Show that the n-sphere S" is simply connected for n>2. 12

(5% 12 =60 Marks)
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